Интенсивности гаммаизлучения ²³⁵U.

Берлизов А.Н.¹, В.Н. Даниленко², И.В. Кувыкин³, Д. Кутний⁴

- 1 МАГАТЭ, г. Вена, Австрия
- 2 ООО «ЛСРМ», г. Зеленоград, Россия
- 3 ВНИИФТРИ, п. Менделеево, Россия
- **4** ХФТИ, г. Харьков, Украина

Уточнение интенсивностей линий ²³⁴Th в 2004 г.

ENSDF до 2004 года интенсивности излучения ²³⁴Th (дочерний ²³⁸U):

92.38 кэВ – 2.81(26),

92.80 кэВ – 2.77(26).

Интенсивность характеристической линии **Th**

93.35 кэВ – **5.76(14)**

Работа **Abousahl, S. et. al., NIM A 517 (2004) 211-218,** уточняющая значения интенсивности линий ²³⁴**Th:**

92.38 кэВ – 2.13(20),

92.80 кэВ – 2.10(20).

Отклонение ~30%

Соотношения между этими линиями ²³⁴**Th** и характеристической линии **Th 93.35** кэВ, используются для анализа обогащения урана:

 $I_{92.38}/I_{93.35} = 0.484(45), I_{92.80}/I_{93.35} = 0.477(45).$

Спектрометры и образцы

Приборы:

- Detector LEGe GL0515R, S=500 mm² d=15 mm, input window – 0.5 mm Al.
- Detector LEGe GL1015R, S=1000 mm² d=15 mm, input window – 0.5 mm Al.
- InSpector Portable Spectroscopy Workstation, Model 1200UPU.

LSRM SpectraLineNM uranium isotopic software.

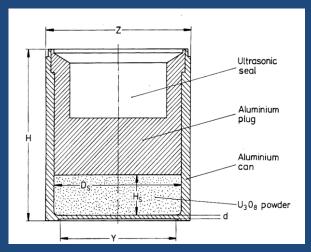
Образцы:

- Uranium Isotopic Standard Reference Material SRM 969 (NBS, USA) – 5 reference samples with 235U enrichment in the range 0.3 – 4.4 %.
- Uranium Isotopic Certified Reference Material CRM 146 (NBS, USA) – 3 reference samples with 235U enrichment in the range 20 – 93 %.

Standard Reference Material SRM 969

Material: U_3O_8 powder, m = 200 g, ρ = 2.5 g/cm³;

Externals: Z = 80 mm, H = 90 mm;


Sample volume: $D_S = 70 \text{ mm}$, $H_S = 20.8 \text{ mm}$;

Al window thickness: d = 2 mm.

Certified abundances in SRM 969 (mass fractions):

	SRM 031	SRM 071	SRM 194
	C, % 1σ, %%	C, % 1σ, %%	C, % 1σ, %%
U-234	0.0020 5.0	0.0052 1.9	0.0171 0.6
U-235	0.3166 0.06	0.7119 0.07	1.9420 0.07
U-236	0.0146 1.0	0.0000 0.0	0.0003 16.7
U-238	99.6668 2.0E-04	99.2828 2.0E-04	98.0406 9.2E-04

	SRM 295	SRM 446	
	C, % 1σ, %%	C, % 1σ, %%	
U-234	0.0279 0.7	0.0359 0.4	
U-235	2.9492 0.07	4.4623 0.07	
U-236	0.0033 3.0	0.0068 1.5	
U-238	97.0196 1.5E-03	95.4950 1.7E-03	

Certified Reference Material CRM 146

Material: U_3O_8 powder, m = 230 g, ρ = 3.78 g/cm³;

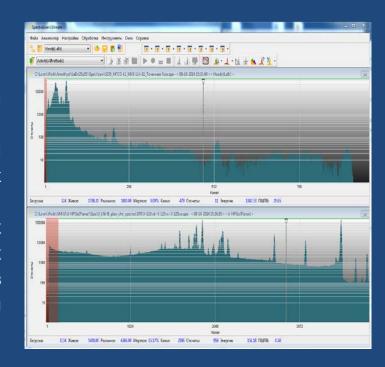
Externals: Z = 80 mm, H = 90 mm;

Sample volume: $D_S = 70 \text{ mm}$, $H_S = 15.8 \text{ mm}$;

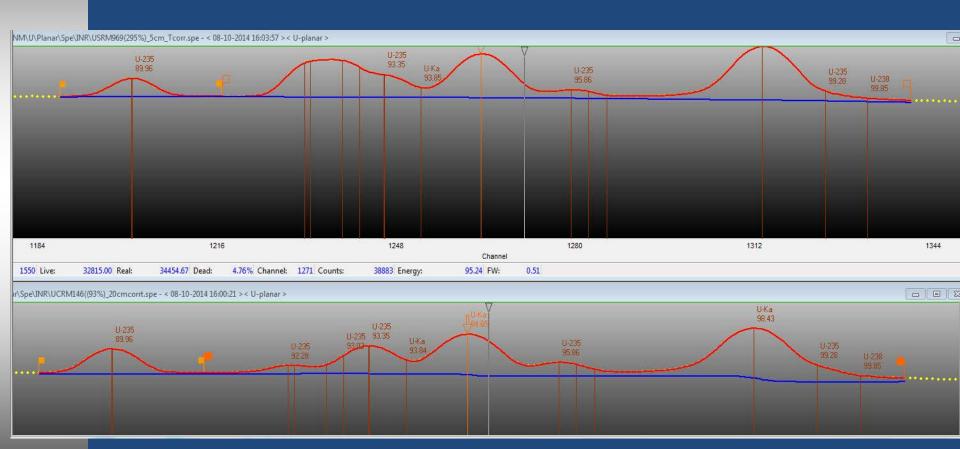
Al window thickness: d = 2 mm.

	NBL 0041	NBL 0042	NBL 0043
	C, % 1σ, %%	C, % 1σ, %%	C, % 1σ, %%
U-234	0.1486 0.12	0.3718 0.13	0.9800 0.15
U-235	20.1070 0.05	52.4880 0.04	93.1703 0.003
U-236	0.1973 0.3	0.2645 0.11	0.2937 0.4
U-238	79.5470 1.3E-02	46.8760 4.6E-02	5.5559 4.8E-02

U/Pu InSpector System



Программный комплекс-SpectraLineUltimate


Гамма-спектрометрический анализ, как для полупроводниковых так и сцинтилляционных спектрометров-HPGe, NaI, LaBr, CdTe

Особенностями комплекса являются:

- •Адекватное описание формы гамма-линий
- •Учет лоренцева уширения при описании рентгеновских линий
- •. Учёт соотношений интенсивностей между линиями одного нуклида при аппроксимации информативных участков спектра.
- Одновременная обработка <u>Всех</u> информативных участков спектра. На границах информативных участков фоновые подставки под ними сшиваются из условия непрерывности спектра и его 1-ой производной.
- учет вклада пиков случайного суммирования.

Фрагменты спектров (88 – 100 кэВ) низко- и высокообогащенных образцов

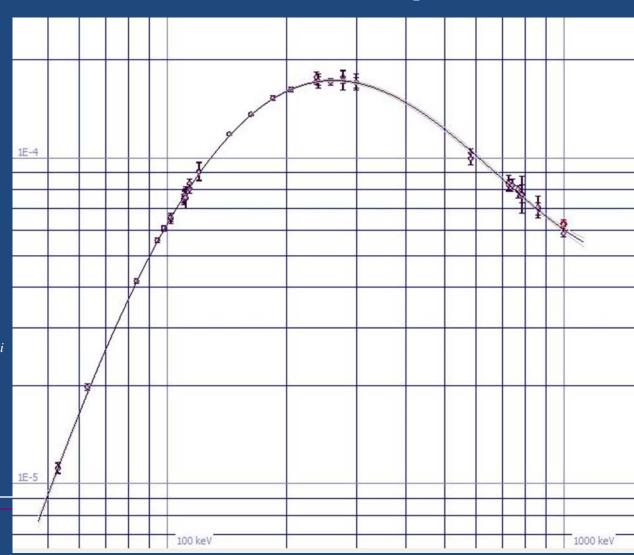
Калибровка спектрометра по эффективности регистрации

Линии, используемые для расчёта эффективности регистрации ниже К-края

Нуклид	Энергия, кэВ	I (Интенсивность), число гамма- квантов на 100 распадов	ΔI, число гамма- квантов на 100 распадов	Δε, %
²³¹ Th	84.214	6.7	0.07	1.7
	102.270	0.441	0.011	2.5
234U	53.2	0.123	0.002	3
²³⁴ Th	63.290	3.75	0.08	2.5

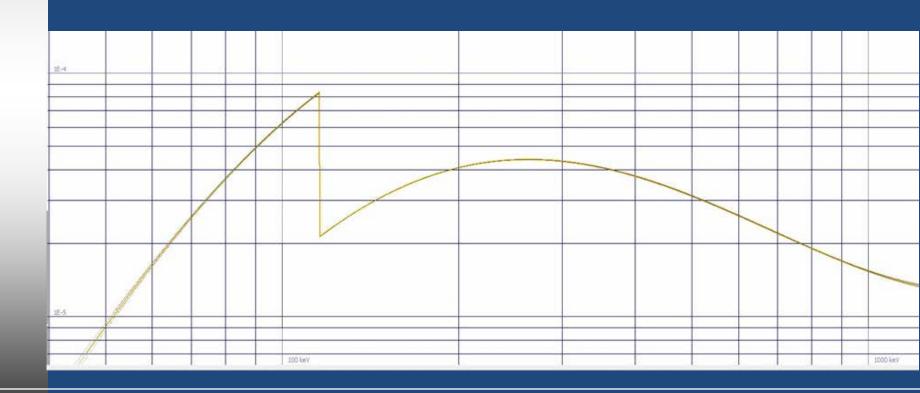
Калибровка спектрометра по эффективности регистрации

Линии, используемые для расчёта эффективности регистрации выше К-края


Нуклид	Энергия, кэВ	I (Интенсивность), число гамма- квантов на 100 распадов	ΔI, число гамма- квантов на 100 распадов	Δε, %
²³⁵ U	143.767	11.00	0.08	0.8
	163.356	4.97	0.04	0.9
	185.715	57.0	0.3	1.0
	205.31	5.01	0.05	1.1
²³⁴ U	120.900	0.0342	0.0005	6
²³⁸ U	766.321	0.323	0.004	2
	1001.026	0.847	0.008	1.5
²²⁸ Th	238.62	42.2	0.556	2.5
	583.191	29.6	0.49	3

Коррекция кривой эффективности на скачок в области K-края

$$\frac{\mathcal{E}_{E<115.6}}{\mathcal{E}_{E>115.6}} = 3.916$$

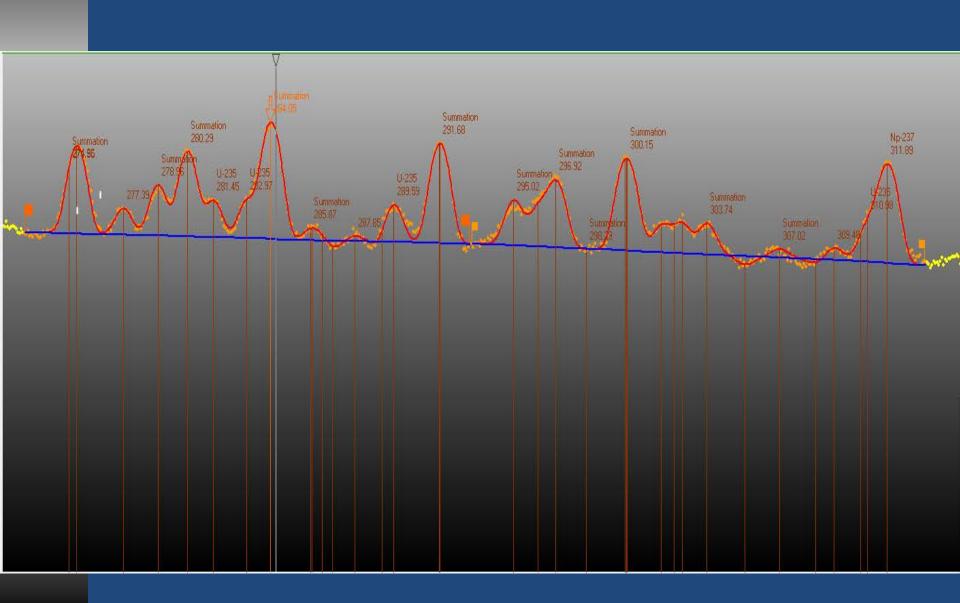

Аппроксимация эффективности регистрации одним полиномом 4-й степени

$$\lg(\varepsilon(E)) = \sum_{i=0}^{4} a_i \cdot (\lg(E))^i$$

Калибровка спектрометра по эффективности регистрации

Обратное преобразование кривой на скачок в области ниже К-края

Результаты. Измерение интенсивности линии 93.35 кэВ


Спектрометр	Образец	I _{93.35}
GL1015R	CRM52	4.83(6)
GL1015R	CRM93	4.83(6)
GL0515R	CRM52	4.88(6)
GL0515R	CRM93	4.85(6)
Среднее значение	4.85(6)	

Измерение отношений интенсивностей

Интенсивности линий **92.38** кэВ, **92.80** кэВ ²³⁸**U**(²³⁴**Th**) и **93.35** кэВ ²³⁵**U** и их отношения

	ENSDF до 2004 и NuDat	ENSDFи NuDat	LNHB 2011/53	Настоящая работа
I _{92.38}	2.81(26)	2.13(20)	2.18(19)	2.35(6)
I _{92.80}	2.77(26)	2.10(20)	2.15(19)	2.42(6)
I _{93.35}	5.81(11)	5.54(14)	5.76(14)	4.85(6)
I _{92.38} / I _{93.35}	0.484(45)	0.384(40)	0.370(40)	0.4845(15)
I _{92.80} / I _{93.35}	0.477(45)	0.379(40)	0.373(40)	0.4997(30)

Вклад пиков суммирования 270 – 315 кэВ

Интенсивности линий ²³⁵U в равновесии с ²³¹Th

Е,кэВ	I (Интенсивность), число гамма-квантов на 100 распадов	
	LNHB 2011/53	Настоящая работа
58.57	0.477(6)	0.471(7)
74.94	0.051(6)	0.036(9)
89.95	1.01(3)	1.02(3)
89.957	3.56(9)	3.04(6)
92.288	0.37(4)	0.41(4)
93.351	5.76(14)	4.85(6)
95.869	0.59(7)	0.69(7)
96.09	0.091(11)	0.093(9)
99.278	0.137(6)	0.149(12)
104.819		0.606(18)
105.604	2.06	1.16(3)
106.239		0.0411(19)
108.582		0.443(13)
108.955	0.685	0.0119(5)
109.442		0.097(6)
109.18	1.66(13)	1.45(3)
115.45	0.03(1)	0.03(1)
194.94	0.63(1)	0.63(4)
198.9	0.036(2)	0.044(2)
202.11	1.08(2)	1.09(1)

Интенсивности линий ²³⁵U в равновесии с ²³¹Th

Е,кэВ	I (Интенсивность), число гамма-квантов на 100 распадов	
	LNHB 2011/53	Настоящая работа
205.31	5.02(3)	5.01(5)
215.28	0.029(3)	0.0295(5)
221.38	0.118(5)	0.116(10)
228.78	0.0074(4)	0.070(2)
233.5	0.038(4)	0.0287(4)
240.87	0.074(4)	0.067(1)
246.84	0.055(3)	0.054(1)
266.47	0.0078(6)	0.060(3)
275.35	0.051(6)	0.0153(4)
275.49	0.032	
275.4 (сумма)	0.083	0.0153(4)
281.42	0.0063	0.039(5)
282.94	0.0063	0.043(5)
289.56	0.0074	0.004(2)
291.65	0.040(6)	0.019(2)
301.7	0.0053	0.0022(3)
345.9	0.04	0.034(5)
387.84	0.04(6)	0.037(3)

Основные результаты

I _{93.35}			
5.76(14) 4.85(6)			
I _{92.38} / I _{93.35}			
0.484(45)	0.4845(15)		
I _{92.80} / I _{93.35}			
0.477(45)	0.4997(30)		